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APPLICATION OF BOUNDS FOR CREEPING
STRUCTURES SUBJECTED TO LOAD

VARIATIONS ABOVE THE SHAKEDOWN LIMIT

R. A. AINSWORTH

Central Electricity Generating Board. Berkeley Nuclear Laboratories. Berkeley. Glouccstershire, England

(JUctilltd IS Novtmbtr 1976; l'tVistd S April 1977)

AIIItnet-Previous work established upper bounds on work and displacement for creeping structures
subjected to load variations above the shakedown limit. The present JlIIPCr applies these bounds to tbrcc
structures subjected to constant mechanicalloadillll and to variable imposed strains. The: results are in good
agreement with those of more detailed calculations.

NOTATION
a coefficient of thermal expansion
fl non-dimensional strain {Jl '"' &/CT,}
'Y non-dimensional curvature f'Y =BI(h/2cry}

f.fij strain
, lIOn-dimensional distance U= z/h}
6 temperatW'e
I( curvature
A plastic muJtiplier
A coastant descn'bing loading cycle
/I. load factor
" Poisson's ratio
I non-dimensional stress {I =CT/CT,}

CT. CT.,. CTo.CT" CTp stress, yield stress and constant stresses, respectively
T cycle time
~ stress function
A area of bar
b breadth of beam
b creep eucrgy dissipation rate

B, BI elastic modulus and tangent modulus, respectively
t, tij elastic strain

F constant describing temperature effect
f (CT'/) yield function
.g(6) positive function of temperature

h depth of beam, thickness of tube
Ie constant
I length of bar

m constant
n creep index

P, Pi applied loads
p, PI; p1aaitic strain

R additional load, radius of tube
S surface

S,j stress deviator tensor
T temperature

T,j tensor {T/j = S/j - mpl;}
t time
t, non-dimensional time {t l =BVot/CT,}

II, U displacement
V volume

VII' Vo creep strain rate and constant strain rate, respectively
z distance from centre-line of beam or lUbe

Subscripts
x, II axial and hoop compoucnts. respectively. for the tube.

I. INTRODUCTION

A problem of importance in the design of fast-reactor nuclear power plant is the behaviour of
structures operating at high temperature which must withstand repeated changes of mechanical
load and temperature. Some situations produce severe thermal gradients which violate shake­
down conditions and it is necessary to carry out an inelastic analysis which allows both creep
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and repeated plasticity. Although a full inelastic analysis could be carried out by computer
methods, such an analysis is extremely expensive in computing time and is not suitable for
normal design purposes.

In recent years, considerable attention has been paid to the development of approximate
methods which obviate the need for a full inelastic analysis. The development of approximate
methods and bounding techniques has been reviewed by Odqvist[l] for steady loading and by
Leckie [2] for variable loadiDg below the shakedown limit. The cxtension of the bounding
technique of Ponter[3] (see also [2]) for load and temperature variations above the shakedown
limit has recently been given by Ainsworth[4]. The bounding method relies on separating the
elastic-plastic behaviour from the creep behaviour; the response within a cycle of loading is
governed by elastic.plastic behaviour leading to a cycle of stress and the overall deformation
due to creep is calculated from the creep strains due to this cycle of stress. It should be noted
that the bounds are only strictly valid for simple non-interactive creep and plasticity laws in
which effects such as creep recovery and cyclic hardenina or softenina are nealeeted. In the
present paper, the use of these bounding methods is demonstrated by apptic:ation to some
simple structures and the results are compared with those of more detailed analysis.

2. MATERIAL BEHAVIOUR AND THEORETICAL RESULTS

The total strain rate Ei/ is considered as the sum of four parts

(1)

where til' Vi!, PI!' 8i! are elastic, creep, plastic and imposed (or thermal) strain rates respectively.
Elastic strains are given by Hooke's law and creep strains are pven in terms of a stress
function 4> by,

(2)

where n, 0'0, Voare constants and g(8) is a positive function of the temperature 8. Two types of
plastic behaviour are considered. The first is one of perfect plasticity with yield criterion
/ (0'1j) S 0 and the associated flow rule,

(3)

where

A=0 if / < 0 or if / =0 and {a/faO'i/}Uij < 0

A2: 0 if / =0 and {a/faO'i/}Ui/ =o.

The second type of plastic behaviour considered is one of linear kinematic strain hardening with
yield criterion,

(4)

where m and k are constants. The associated ftow rule is,

(5)

where

Consider a body of volume, V, surface, S, with negligible body forces and composed of
material having the behaviour outlined above. The body is subjected to given imposed strains
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BII(t}, to given mechanical loading PI(t} over part Sp of S, and to zero surface velocities over
the remainder S" of S. The imposed strains and mechanical loads both have period T so that
BI/(t + T} =BI/(t} and PI(t + T} =PI(t}. It has been shown in [4] that the displacements Ui of such
a structure can be bounded by cyclic plasticity solutions for a structur.e that does not creep.
Denote by 0': a cyclic plasticity solution for a structure having imposed strains Bi/(t} and
applied loads PI(t} + Rs(t) where RI(t) are additional loads of period T. If the additional loads Rj

are taken as a constant point load R(R > 0) the displacement UR in the line of R is bounded by,
[4J,

(6)

where D(O'IJO'o) is the creep energy dissipation rate O'ilVII and where UI is the displacement in
the line of R associated with the cyclic plasticity solution. Setting the additional loads
proportional to the applied loads as RI =(",. - l)Pi where",. is a constant (",. > l) gives a work
bound, [4J,

I
TI 1~1 1 (n )"+IIT r .o $ PIIlI dS dt s 0 $ PIU' dS dt +(",. _ l)n n +1 0 Jv D(O':IO'o) dV dt, (7)

where Ii' are the displacement rates associated with the cyclic plasticity solution.
The bounds (6, 7) can be optimised by choice of additional loads (R or IL) and by choice of

the stress distribution 0':. In the application to simple structures, optimum bounds are used and
these are bounds for which the cyclic plasticity solution has an associated strain cycle,

(8)

which is kinematically admissible. Here A are plastic multipliers, required only for perfectly­
plastic materials, which satisfy Aii1: 0, A/(0':) =O.

3. APPLICATION TO SIMPLE STRUCTURES

Three simple structures, a beam, a tube and a two-bar mechanism are considered. For all
structures, the mechanical loads are held constant and there are periodic variations of imposed
or thermal strains. These are the conditions most likely to violate shakedown for practical
structures.

The uniaxial form of the elastic-plastic behaviour is shown in Fig. 1. The constants m, k of
eqn (4) are related to the virgin yield stress 0', and the slope E 1 by k2 =20'/13 and m =
2EE1/3(E - E I} ... 2E1/3.

Results are presented in non-dimensional form using a non-dimensional stress I =0'10'" a
non-dimensional strain fj =&10'1 and a non-dimensional time t l =EVotIO'" The arbitrary
normalising stress 0'0 of eqn (2) is taken as the yield stress 0'"

Oy

Fig. I. Stress-strain curve.



984 R. A. AiNSWORTH

P~
\ - .
'. K l
\ I

1(-

~

Iu
-

Time

Fig. 2. Geometry and loading of beam.

3.1 Rectangular s,ction beam
Consider the rectanpdar section beam shown in Fia. 2, subjected to a constant axial load P

and a periodic curvature K. The temperature is uniform throuabout the beam and the tem­
perature elect of eqn (2) is taken as g(') == 1.

Exact solution-luucllftblg rnat,riGl. DurinI periods of creep at constant curvature, the total
strain rate E is given from eqns (1) and (2) as

e== alE+ Vfl.u!U,)"

where it is assumed that no further plastic strains occur during these parts of the cycle. (As
expected, the peat stress relaxed aDd this assulllption was fouad to be vtIicl for the loadiDa
conditions coUidered.) Since the curvature aDd axial load are constant, the strain rate is
uniform throUlb the tbickDess and the mean stress rate is zero. Hence

i
l/2 il/2

dfj/dtl == 1" d'; aI/atl == I" d' - I"
-In -In

(9)

where the non-dimensional variables I, fj, II and, == z/h have been introduced. Representing
the stress distribution by values at a Dumber of points throutb the beam, eqn (9) bas been
solved usina the method of time-steps (see for eUlllple, Penny aad Marrtott[5]). For a giveD
time-step .1tl the new stress distribution Ir+b say, at time II +.1tl was found from the
distribution I,. at time II using a fourtb-order Runae-Kutta method. Denotina the secoed of eqns
(9) as aIlatl· f(I), then

(10)

where

The method (0) was found to be more economical in computing time than the simple time-step
method I.+I == I.+attf(I.) which required a smaller value of allowable time-step to obtain
consistent results.

The above elastic-creep analysis must be interrupted at times of curvature chanBe by an
elastic-plastic analysis. Denoti.rlg a cbanae in curvature by .1K, the total strain cbaqe is
dE == .1Eo+zAK where AEo is the change in mean strain which must be found. Referring to Fig.
1, if the stress u and the elective yield stress u,I are known, the stress and strain increments
aU,.1E are related by:

if u z U,I and dE 2: 0, .1u == BlaE and A.u,t == E1A.E

if u/-2uysu<u/ and dE >0, A.U=EA.E and A.uyl=O

unless u +.1u > uy' when au == Uy'- u +E,[.1E - (u/ - u)/B]

and Au,' == B,[A.E - (u/ - u)/B]

Similar conditions are applicable for dE < O. An estimate of .1Eo was used to evaluate the
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changes Au and an iterative method was used to find that value of AEo for which the mean
stress change was zero (to within acceptable limits).

For perfectly-plastic and isotropic strain-hardening materials, the exact solution to the
elastic-plastic problem has been obtained by Bree [6] and the results may, be simply modified for
kinematic hardening materials allowing for yielding in both tension and compression. Details of
this are omitted for brevity but the results indicate that, even after a large number of curvature
changes, no significant error is introduced by the numerical elastic-plastic analysis outlined
above.

Combination of the above elastic-creep and elastic plastic analyses enables the cyclic
stationary state to be obtained by convergence from any initial stress distrIbution. A typical
solution is shown in Fig. 3 where the stress distribution is shown at various times (I.) during the
cycle. The mean strain rate occurring in the cyclic stationary state is shown for a range of
non-dimensional cycle time T and cycle parameter A (see Fig. 2) in Fig. 4.

Upper displacement bound. In order to determine the upper bound (6), a cyclic plasticity
solution must be evaluated. Introducing the non-dimensional curvature "'( =EKh/2uy it can be
seen that the elastic stress range is greater than 2uy for ',I> 1/"'(- Denoting the non-dimensional
stress distribution for the cyclic plasticity solution as IM) for 0 < '. < AT and as IM) for
AT < '. < T, then

Ii() = IM)+ 2- 2E\("'(, + 1)/E, -1/2 s, s -1!'Y

Ii,) =IM) - 2"'(" -1/"'( s,:S 1!'Y

I 2W= It<{) - 2- 2E\("'(, - 1)/E, 1/"'(:S,:s 1/2.

(11)
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Fig. 3. Beam, cyclic stationary stress distributions.
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Fig. 4. Beam. comparison of exact, IimitiaI and upper boIIIId solutions.

For the case of perfect-plasticity (E, - 0) the coutraints 11,1" 1 and II~" 1 must be applied.
These require 12 =I, I. =- 1for -1/2" ,,. - 1/1 and I. = I, 12 =- 1for 1/1"'" 1/2. In the
absence of ratehetting, the displacement bound (6) is Jiven in terms of I" 12 as

1 N+I 1/2

A(&!uy)<ii(n : 1) ~R ~IJ L/2 [AI,"+' +(1-A)I2N+'] d(

where I R = f~~72 I. d'. I p = Plbhuy and Ae is the increase in axial strain per unit DOn­
dimensional time. Using the results of Section Sof [4] the displacement bound was optimized as
follows: Any initial estimate (for which, in the case of perfect plasticity, I, and 12 satisfied the
yield criterion) led from eqn (11) to a value of the upper bound proportional to W, say, where

Following eqn (30) of [4], for this value of W a new stress distribution I,W was chosen so that
its corresponding creep displacement satisfied

for all ,. For perfect plasticity, the resultant values of I" 12 were amended if they violated the
yield criterion. For instance, if the new value II> 1 then I. was set at I. =1; if 12 < - 1 then
12 = - 1; etc. Having determined new values of I" 12, a new value of W was evaluated and hence
new values of II,12obtained as above. This process converged rapidly to the optimum Nund, four
iterations being adequate. The limiting solution for cycle time T ~ 0 was obtained in a similar
iterative manner.

Optimum upper bound solutions and limiting (T ~ 0) solutions are compared with exact
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solutions in Fig. 4. For the results plotted, the yield zones of the cyclic plasticity solutions
occupy a fifth of the total depth h of the beam. The upper bound and limiting solution were
obtained fairly readily whereas the evaluation of exact solutions required large amounts of
computing time before a cyclic stationary state was reached.

For realistic structures, the creep strain accumulated in the cyclic stationary state is limited
to about 1%, i.e. to about ten yield strains. Assuming that the structure must withstand more
than 200 cycles in its lifetime, the non-dimensional cycle time (EVoTIO'y) must be less than 0.5
for small values of ,\ and less than 0.01 for values of ,\ nearer 0.5 (see Fig. 4). It can be seen
that, for such cycle times both the upper bound and limiting (T-'O) solutions give good
estimates of the true behaviour.

The optimum bound (6) and the limiting solution (T -. 0) have also been evaluated for a
beam of perfectly-plastic material (E. = 0 in Fig. 1). Consideration is limited to cases where
ratchetting does not occur. This requires that the applied load P and the curvature change K

satisfy PK <2bO'/IE, (Bree[6]). In addition the upper bound solutions are ones for which there
is no ratchetting so that additional loads R satisfy (P +R)K < 2bO'/IE.

Some typical results are given in Table 1. The difference between the two solutions is much
greater than in the hardening case and, for low values of axial load P, the upper bound gets a lot
worse. This is because the stress in the outer one-fifth of the beam must be ±O'y for the
plasticity solution. These regions contribute a large fraction of the integral (6) and so the upper
bound is much less sensitive to axial load variations than the actual solution.

3.2 Thin-walled tube
Consider the thin-walled tube shown in Fig. 5 subjected to a constant axial load (giving rise

to a constant mean axial stress 0',) and to a constant internal pressure p (giving rise to a
constant mean hoop stress up). A temperature difference is imposed between the inner and
outer surfaces of the tube and has the periodic variation shown in Fig. 5. It is assumed that the
temperature difference gives rise to a temperature distribution which is linear in the radial
co-ordinate, z. The deformation is completely described by two displacement components, an
axial displacement independent of radius and a radial displacement which gives rise to a hoop
strain approximately independent of radius (since thickness h <C radius R). The effect of
temperature on creep rate is not considered and so the problem is similar in nature to that of the
beam. The structure is used to demonstrate the use of the hardening law and the upper bound
method for two-dimensional stress systems.

Exact solution. The function t/J in the creep law (2) is taken as the von Mises equivalent
'ltress. The elastic and creep strain rates are then given from eqn (2) and Hooke's law by

(12)

where suffices oX, 6 denote axial and hoop components respectively, JI is Poisson's Ratio and 0',

is the equivalent stress, 0',2 = O',} +O'l- O'xlT6' The numerical results have been obtained for a
value of Poisson's Ratio JI =0.3. The conditions of constant mean axial stress, constant mean
hoop stress and of total axial and hoop strains being independent of radius readily lead to the

Table I. Perfectly-plastic beam. comparison of non-dimensional strain rates

A

0.0 0.1 0.2 0.3 0.4 0.5

I p =0.1. 'Y" 2.5
Limiting solution (T~O) 0,001 0.008 0.011 0.013 0.013 0.014
Optimum bound (6) 0,110 0.119 0.\27 0.133 0.\37 0.139

I p = 0.25. 'Y = 2.5
Limiting solution (T~O) 0.095 0.094 0.120 0.134 0.142 0.144
Optimum bound (6) 0.283 0.289 0.292 0.293 0.293 0.293
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Fig. S. Geometry and loading of thin tube.

required results for periods of creep at constant temperature,

(13)

where the non-dimensional CCH)l'diDate , =zJIt bas been introduced. It has been assumed that
DO fUrtber plutic straias occur duriaI periods of creep at constant temperature (an assumption
valid for the coaditions considered). Equatioaa (12) and (13) have been solved usina the method
of time-steps in coajuactioa with the fOUfth..order Ruaae-Kutta method pven by eqn (10).

The above elutic-ereep aDIIysis must be interrupted at times of temperature cbaDp by an
eJaatic.pIutic aDIIysis. The yield criterion (4) may be written in terms of the CODStants D'" E, of
Pia. 1 as

where

U" =0'" - 4E,(p" + iP,)/3

U, =0', - 4E.(P, +!p,,)/3

(14)

which is a translation of the Mises ellipse in the (1'", (1', plane. The flow rule (4) is

(15)

In order to solve the elastic-plastic problem, the temperature cbanle .1T must be divided
into a DIIIIlber of intervals 8T (ten intervals were found to be adequate). The chaaIe in total
strain is then pven from eqn (1) as

(6)

where Be", Be, are independent of ,. For any pven estimates of Be", Be, the chanaes in &7", &7,
which would occur elastically (3p" - 8p, - 0) can be evaluated usiq eqn (16). Where the
elastic chanaes do not cause the yield criterion (14) to be violated, the changes in stress have
their elastic values and 8p" =81', =O. Where the elastic changes cause (14) to be violated, use
of the flow rule (1') and the condition that the ftnal state must lie on the yield surface enable
Sp", 8p, to be related to &7". &7.. The changes 80'", 80', can then be obtained from eqn (16). An
iterative method was used to find those values of BE". BE, for which the mean stress changes
were zero. Details of the numerical procedure are omitted for brevity.

Combination of the above elastic-creep and elastic-plastic analyses enables the cyclic
stationary state to be obtained by convergence from any initial stress distribution. For
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comparison purposes, the cyclic stationary state is characterised by the non-dimensional work
or generalised displacement rate U given by

U =(~)(E~E') + (;:)(E:yEx) (17)

where AEx, AE. are mean axial and hoop strain increments per unit non-dimensional time. Some
results are presented in Fig. 6 for a range of non-dimensional cycle time T and for a range of the
cycle parameter A.
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F". 6. Tube. comparison of exact, IimitiDa and upper bound solutions.

Upper work bound. In oRIer to determine the work bound (7) it is necessary to find the form
of the cyclic plasticity solution. This consists of an elastic core where no yielding occurs and
yield zones where equal and opposite amoUDts of plastic strain occur on application and
removal of the temperature difference. For the temperature change, it can be seen from eqns
(i2) and (16) that for purely elastic behaviour (8px =Bp, =BEx =BE, =0) &rx=&r.. Le. that the
elastic loading line is parallel to the major axis of the Mises ellipse. As a result of plastic
deformation the Mises ellipse is translated but not rotated in the ux, u. plane and consequently
in the yield zones for the cyclic plasticity solution, loading occurs along the major axis of the
Mises ellipse. This is shown schematically in Fig. 7. Starting from the point A I on the dashed
ellipse, elastic changes occur until the point B I is reached. Plasticity then occurs from B I to B
and the yield surface moves from the dashed ellipse to the solid ellipse. On reversal of the
temperature difference, changes are elastic from B to A and plasticity occurs from A to A I

returning the yield surface to its original position.
When yielding occurs, the changes in plastic strain are then simply related to the stress

changes from eqns (14) and (15) by

(18)

The overall changes in ux, u, are then easily obtained in terms of the overall change in
temperature difference AT from eqns (16) and (18). Introducing the non-dimensional tem­
perature change oy =EaAT/2uy(1- II), the elastic core is the region I"~ s 1/oy. Denoting the
non-dimensional stress distribution for the cyclic plasticity solution as I,(l') for 0 < t. < AT and
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as Ii') for AT < t. < T then

(19)

Here I .. I 2 can represent either CTJCTy or CT'/CTy but dUferent choices of 1M) are required to
satisfy equilibrium requirements. Denotina the correspondina values of II as Ilz, I .. with
equivalent stress II" the work bound (7) may be written in terms of the aeneraUzed
displacement U of eqn (11) as

1 )"+1 JI/2Us (IJ. -1),.(,.:1 -1/2 {AI1.+
1
+(1-A) ~I}d'

J
I12 J"2

where IJ. = II/I d{/CTp = Ilz d{/CT,
-\/2 -112

The associated strain cycles (8), {J,,, {J8 say, are

(Jz =AI1;I(II" -!II8) + (1- A)IL-I(I2x - !I28)}

(J8 =AI1;I(I I8 -!II") + (1- A)I~I(I28- !I2x )

(20)

(21)

where the condItion at the optimum is that {J" and {J8 are independent of ,.
Since the applied loads are constant, the other condition at the optimum is similar to eqn

(30) of [4] and is related to the bound (20) by W, say,

(22)
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(23)

The following iterative procedure to obtain the optimum bound was adopted.
Initial estimates I h, II6 which satisfied eqn (20) enabled W to be evaluated from eqns (19)

and (23). For this value of W, new values of II" II6 were chosen so that eqn (20) was satisfied
and so that {3., {36 given by (21) were independent of, and satisfied (22). The new values of II"
II6 led to a new value of W from eqns (19) and (23) and hence to further estimates of II" I I 6­

The process was repeated to convergence. The limiting solution for cycle time T-+O was found
in a similar iterative manner.

The optimum works bounds (7) and the limiting solutions (T -+ 0) are compared with exact
solutions in Fig. 6. As in the case of the beam, the bounds and limiting solutions were evaluated
fairly readily whilst the exact solutions required large amounts of computing time before a
cyclic stationary state was reached.

The limitation on accumulated creep strain in practical structures suggests that a typical
non-dimensional cycle time is about T = 0.25. It can be seen From Fig. 6 that, for such cycle
times, both the upper bound method and the limiting solution (T -+ 0) give good estimates of the
true behaviour.

3.3 Two-bar structure
Consider the structure shown in Fig. 8 consisting of two bars of equal cross-sectional area A

and of equal length, I. A constant vertical load P is applied and the structure is constrained to
move vertically. The temperature of bar 2 is held constant while the temperature of bar 1 varies
periodically as sbown in Fig. 8. The bars are made of perfectly-plastic material and the
structure is used to assess the accuracy of the upper bound method in cases of ratcbetting.

The non-dimensional parameters I p =P/2Auyand IT'" EalJ.T/uy, where a is the coefficient
of thermal expansion, are used to describe the loading. The temperature effect on creep rate
g(8) of eqn (2) is represented by the constant F which is tbe factor by which the creep rate
increases for a temperature increase lJ.T.

Exact solution (T -+ 0). The exact solution for cycle time T-+ 0 can be determined im­
mediately. After bar 1 heats up (t =0+) the stress in bar 2 must be equal to the yield stress U y,

i.e. I 2(0+) = 1. From conditions of compatibility and equilibrium, the displacement and stress
rates, u, I,2' at this time are

(3(0+) = Eu(O+)/luy =(EVol2uy){1 +F(2Ip -I)"}

I,2(o+) = - (EVoI2uy ){1- F(2Ip -1)"}
(24)

where ~ is the non-dimensional displacement rate and eqns (24) are only valid if they give
I,2 < O. Attention is restricted to cases where I,iO+) is negative as given above, which is true for
any value of F if I p :S 0.5. Assuming that stress redistribution is small in the time 0 < t < AT, the
strain incurred in this part of the cycle is AT~(O+) and the stress in bar 2 immediately before the
temperature change at time AT is IiAT-) =1+ ATI,iO+). Immediately after the temperature

Temp.

P,U

Fig. 8. Geometry and loading of two-bar structure.
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change, the stress in bar 1 is the yield stress and hence the stress in bar 2 is Iz(A,'r+):II 21, - 1.
Since no plastic strain occurs in bar 2 at this time, the strain change due to the temperature
change is

The strain cbanae due to creep between time O· and A.,- is AT#i(O+) and hence from eqas (24)

/3 (A.,+) - /3(0·) '" 21, - 2+ EATVoIuy.

In similar manner the change between times A.,·, .,+ is

/3("+) - /3 (A.,+) '" IT +21, - 2+E(l- A).,VoIuy•

The total change per cycle /3("+)-/3(0+)=4/3, say, is then

A/3 -IT +41, -4+E.,VoIuy " AU, + AUc,

say, where AU, is the ratchet displacement per cycle in the absence of creep. It sbould be
noted that, in the presence of creep, the displacement increase due to plasticity is pater tban
AUpo It can be seen that the increase per cycle is independent of the parameten A, F.

Uppu bolllld. The cyclic pluticity solutioa for this problem is shown in PiJ. 9. The stms
in bar 2 is Uy for 0< t < AT and in bar 1 is u, for A., < t <.,. The stms diJtributioD is then
completely defined from equilibrium coasWerations aad the upper displacellllDt bouad (6) can
only be optimised for an additioDalload R (-(I' -I)P say). The upper bouDd (6) is then

~ . ~ 1I n)" AUc {2 ~ }".I F4/3 s41'., -4+.T +n\ii+i (2(p. -1)1,) [l + 1'., -I (A +1- A)l

where AUc - E.,VoIu, as defined above. Altbouab the bound involves the parameters A, F,
the optimum solution occurs at values of I' for which (21'1, - 1)".1 • 1 and is virtually
independent of A, F. This is in lIII'eemeat with the eUd solution .,-+0 liven above.

The upper bound and the euet solution (,.-+0) are compared in Table 2 for a variety of
AU" AUn i.e. for a variety of cycle times. In view of the severe Ioadina. ......nt between the
two solutions is good.

----
---Bart
-1lar2

AT It Tim.

,..----- -----
IT... 9. Two-bar. cyclic: pIaaticity solution.

Table 2. Two-bar. COII1pIIiIon of noa-dimeosioDll strain iDcremcnts

4.Up 0.02 O.OS 0.10 0.02 0.o, 0.10

4.Uc 0.0' 0.0' O.OS 0.10 0.10 0.10

Exact (T -+0) 0.07 0.10 O.lS 0.12 O.1S 0.20

Bound (6) 0.18 0.21 0.26 0.15 0.28 0.33
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4. DISCUSSION

Upper bounds on displacement, work and creep energy dissipation have been applied to
three structures. The bounds give a good estimate of the true behaviour for realistic cycle
times. However, the accuracy of the displacement and work bounds becemes poor when there
are large variations in imposed strains combined with low mechanical loads. This limitation of
the upper displacement and work bounds will also apply for loading below the shakedown limit.

The upper bound on creep energy dissipation does not suffer from this restriction. As for
loading below the shakedown limit, the optimum stress history should closely approximate the
actual stress history for practical structures. Although the upper bound solution cannot guarantee
to give a safe estimate of any particular displacement, it is, on average, safe.

For the cases considered, exact solutions required large amounts of computing time before
a cyclic stationary state was reached whereas the optimum upper bounds could be readily
evaluated. This was because the form of the cyclic plasticity solution could be easily obtained.
However, for complex structures, the evaluation of a cyclic plasticity solution may prove to be
difficult. Many perfectly-plastic structures settle down to a cyclic stress state after one cycle,
but for cases of kinematic hardening the cyclic stress state is often approached only asymp­
totically. However, one cyclic plasticity solution may be used to provide upper bounds for a
range of problems. Hence, when the behaviour of a complex structure is required for a variety of
loading conditions, it should be worthwhile to evaluate the cyclic plasticity solution and use the
upper bound approach.
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