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STRUCTURES SUBJECTED TO LOAD
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Abstract—Previous work established upper bounds on work and displacement for creeping structures
subjected to load variations above the shakedown limit. The present paper applies these bounds to three
structures subjected to constant mechanical loading and to variable imposed strains. The results are in good
agreement with those of more detailed calculations.

NOTATION
a coefficient of thermal expansion
B non-dimensional strain {§ = Eefo,}
v non-dimensional curvature {y = Exh/20,}
€,€; strain
{ non-dimensional distance {{ = z/h}
6 temperature
K curvature
A plastic multiplier
A constant describing loading cycle
u load factor
v Poisson’s ratio
3 non-dimensional stress {2 = o/,}
0,0, 00,0,,0, stress, yield stress and constant stresses, respectively
T cycle time
¢ stress function
A area of bar
b breadth of beam
D creep energy dissipation rate
E,E, eclastic modulus and tangent modulus, respectively
e,¢; clastic strain
F constant describing temperature effect

f(oy) yield function
-g(6) positive function of temperature
h depth of beam, thickness of tube
k constant
! length of bar
m constant
n creep index
P,P, applied loads
p.p; plasitic strain
R additional load, radius of tube
S surface
S; stress deviator tensor
T temperature
T; tensor {T; = S;—mp;}
t time )
t, non-dimensional time {t, = EV,t/o,}
u, U displacement
.V volume
Vi, Vo creep strain rate and constant strain rate, respectively
z distance from centre-line of beam or tube
Subscripts
x,8 axial and hoop components, respectively, for the tube.

1. INTRODUCTION
A problem of importance in the design of fast-reactor nuclear power plant is the behaviour of
structures operating at high temperature which must withstand repeated changes of mechanical
load and temperature. Some situations produce severe thermal gradients which violate shake-
down conditions and it is necessary to carry out an inelastic analysis which allows both creep
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and repeated plasticity. Although a full inelastic analysis could be carried out by computer
methods, such an analysis is extremely expensive in computing time and is not suitable for
normal design purposes.

In recent years, considerable attention has been paid to the development of approximate
methods which obviate the need for a full inelastic analysis. The development of approximate
methods and bounding techniques has been reviewed by Odqvist[1] for steady loading and by
Leckie[2] for variable loading below the shakedown limit. The extension of the bounding
technique of Ponter([3] (see aiso [2]) for load and temperature variations above the shakedown
limit has recently been given by Ainsworth[4]. The bounding method relies on separating the
elastic-plastic behaviour from the creep behaviour; the response within a cycle of loading is
governed by elastic-plastic behaviour leading to a cycle of stress and the overall deformation
due to creep is calculated from the creep strains due to this cycle of stress. It should be noted
that the bounds are only strictly valid for simple non-interactive creep and plasticity laws in
which effects such as creep recovery and cyclic hardening or softening are neglected. In the
present paper, the use of these bounding methods is demonstrated by application to some
simple structures and the results are compared with those of more detailed analysis.

2. MATERIAL BEHAVIOUR AND THEORETICAL RESULTS
The total strain rate €; is considered as the sum of four parts

€y =éy+ Vi+py+ 6y 4))
where ¢;, Vi, pyi, 0; are elastic, creep, plastic and imposed (or thermal) strain rates respectively.
Elastic strains are given by Hooke's law and creep strains are given in terms of a stress
function ¢ by,

Vil Vo= ¢"{0d/3(ayao)}s(6), )
where n, oo, V, are constants and g(8) is a positive function of the temperature 9. Two types of
plastic behaviour are considered. The first is one of perfect plasticity with yield criterion
f(o)) 0 and the associated flow rule,

i = A afldoy, 3

where

A=0if f <Oorif f = 0and {3f/do;}d; <O
A =0 Iff =0and {aflao'.-,}dq =0.

The second type of plastic behaviour considered is one of linear kinematic strain hardening with
yield criterion,

T;T; - k*<0 where T; =S, —mp, 4)
where m and k are constants. The associated flow rule is,
pi = ATy, )
where

A' =0 if TgiT,',' < k? orif T;)Tq =k? and TqS;; <0
A = TySymk?if T,;T;=k* and T;S;=0.

Consider a body of volume, V, surface, S, with negligible body forces and composed of
material having the behaviour outlined above. The body is subjected to given imposed strains
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8,(t), to given mechanical loading P;(¢} over part Sp of S, and to zero surface velocities over
the remainder S, of S. The imposed strains and mechanical loads both have period 7 so that
8;(t + 7) = @y(t) and P;(t + r) = Pi(t). It has been shown in [4] that the displacements &; of such
a structure can be bounded by cyclic plasticity solutions for a structure that does not creep.
Denote by of a cyclic plasticity solution for a structure having imposed strains 6;(¢) and
applied loads P;(1) + Ri(t) where Ri(t) are additional loads of period 7. If the additional loads R;
are taken as a constant point load R(R > 0) the displacement Uy in the line of R is bounded by,
(4],

n n+l pe .
Un(r)~ Un(0) < UK(r) - U$(0)+nR(n . l) fo fv D(otlog dV dt, ©
where D(oy/oy) is the creep energy dissipation rate cr.-,-V;; and where U} is the displacement in
the line of R associated with the cyclic plasticity solution. Setting the additional loads
proportional to the applied loads as R; = (u — 1)P; where p is a constant (u > 1) gives a work
bound, [4],

f f Pui; dS dt < j j PitdS dt + — Im(ui])m j; jvﬁ(a§/oo)dth, ™

where u¥ are the displacement rates associated with the cyclic plasticity solution.

The bounds (6, 7) can be optimised by choice of additional loads (R or ) and by choice of
the stress distribution off. In the application to simple structures, optimum bounds are used and
these are bounds for which the cyclic plasticity solution has an associated strain cycle,

fo ' [Vod" {3/ 3(ooo)}g(0) + A aflaa¥) dt @®)

which is kinematically admissible. Here A are plastic multipliers, required only for perfectly-
plastic materials, which satisfy A =0, Af(e]) =0.

3. APPLICATION TO SIMPLE STRUCTURES

Three simple structures, a beam, a tube and a two-bar mechanism are considered. For all
structures, the mechanical loads are held constant and there are periodic variations of imposed
or thermal strains. These are the conditions most likely to violate shakedown for practical
structures.

The uniaxial form of the elastic-plastic behaviour is shown in Fig. 1. The constants m, k of
eqn (4) are related to the virgin yield stress o, and the slope E; by k*=2¢,%/3 and m =
2EE,/3(E ~ E) = 2E,/3.

Results are presented in non-dimensional form using a non-dimensional stress 2 = g/o,, a
non-dimensional strain B = Ee/o, and a non-dimensional time t,=EVyt/o,. The arbitrary
normalising stress o of eqn (2) is taken as the yield stress o,.
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Fig. 1. Stress-strain curve.
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Fig. 2. Geometry and loading of beam.

3.1 Rectangular section beam

Consider the rectangular section beam shown in Fig. 2, subjected to a constant axial load P
and a periodic curvature x. The temperature is uniform throughout the beam and the tem-
perature effect of eqn (2) is taken as g(8)=1.

Exact solution-hardening material. During periods of creep at constaat curvature, the total
strain rate ¢ is given from eqns (1) and (2) as

é = G{E + Vylola,)"

where it is assumed that no further plastic strains occur during these parts of the cycle. (As
expected, the peak stress relaxed and this assumption was found to be valid for the loading
conditions considered.) Since the curvature and axial load are constant, the strain rate is
uniform through the thickness and the mean stress rate is zero. Hence

142 2

dgide, = " Itdy; o%faty= " ndg-3" 9

where the non-dimensional variables 2, 8, f; and { = z/h have been introduced. Representing
the stress distribution by values at a number of points through the beam, eqn (9) has been
solved using the method of time-steps (see for example, Penny and Marriott[S]). For a given
time-step Af, the new stress distribution X,.,, say, at time t,+At, was found from the
distribution £, at time ¢; using a fourth-order Runge-Kutta method. Denoting the second of eqns
9) as aZ/at; = f(2), then

zn-] =2r+(ko+2k|+2kz+ k3)16 (10)
where
ko=Anf(E,), ki=AtfE, +iko), ki=AtfE, +3k0), k3= AnfCE, +k)

The method (10) was found to be more economical in computing time than the simple time-step
method X, =3, +Atf(Z,) which required a smaller value of allowable time-step to obtain
consistent results.

The above elastic-creep analysis must be interrupted at times of curvature change by an
elastic-plastic analysis. Denoting a change in curvature by Ax, the total strain change is
Ae = Aeg+ zAx where Aegg is the change in mean strain which must be found. Referring to Fig.
1, if the stress o and the effective yield stress o,' are known, the stress and strain increments
Ao, Ae are related by:

if o =0, and Ae 20, Ao = EjAe and Ac,' = EiAc
if 0)'/=20,=0<0, and Ae >0, Ac = EAe and Ag,' =0
unless o +Ac >0, when Ao =0, — o + E|[Ae ~ (0,' - 0)/E]
and Ac,' = E|[A¢ - (0, - 0)/E]

Similar conditions are applicable for Ae <0. An estimate of Ae¢, was used to evaluate the
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changes Ac and an iterative method was used to find that value of A, for which the mean
stress change was zero (to within acceptable limits).

For perfectly-plastic and isotropic strain-hardening materials, the exact solution to the
elastic-plastic problem has been obtained by Bree [6] and the results may be simply modified for
kinematic hardening materials allowing for yielding in both tension and compression. Details of
this are omitted for brevity but the results indicate that, even after a large number of curvature
changes, no significant error is introduced by the numerical elastic-plastic analysis outlined
above.

Combination of the above elastic-creep and elastic plastic analyses enables the cyclic
stationary state to be obtained by convergence from any initial stress distribution. A typical
solution is shown in Fig. 3 where the stress distribution is shown at various times (t,) during the
cycle. The mean strain rate occurring in the cyclic stationary state is shown for a range of
non-dimensional cycle time t and cycle parameter A (see Fig. 2) in Fig. 4.

Upper displacement bound. In order to determine the upper bound (6), a cyclic plasticity
solution must be evaluated. Introducing the non-dimensional curvature y = Exh/20, it can be
seen that the elastic stress range is greater than 2o, for |{| > 1/y. Denoting the non-dimensional
stress distribution for the cyclic plasticity solution as 3,({) for 0<t, <At and as 3¢{) for
AT <t;<r, then

3A¢) = 34(0)+2- 2By + VIE, ~12s{ s ~ 1]y
2 =229, —Uys{=1ly am
24 =3:()-2-2E\(y{ - DIE, llys{=1/2.

- e un o am e - - - -

Y= 05

-oaJ
Fig. 3. Beam, cyclic stationary stress distributions.
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Fig. 4. Beam, comparison of exact, limiting and upper bound solutions.

For the case of perfect-plasticity (E, = 0) the constraints {Z,| = 1 and |2;| = | must be applied.
These require 2,=1,%,= —1for-12s{s -1/yand 2, =1,3,= ~1for l/y <{ s 1/2. In the
absence of ratchetting, the displacement bound (6) is given in terms of X,, 3, as

n+l

MEBdo) <(-22) (=) | " AT -5 0

n+1 r=2p/ Jon

where 3z =['%h3,d{, $p =Plbho, and Ae is the increase in axial strain per unit non-
dimensional time. Using the results of Section 5 of [4] the displacement bound was optimized as
follows: Any initial estimate (for which, in the case of perfect plasticity, ¥, and £, satisfied the
yield criterion) led from eqn (11) to a value of the upper bound proportional to W, say, where

12

._.________1_____ n+l - n+l
W (z.—zp)f.m“z' F-0EN g

Following eqn (30) of [4], for this value of W a new stress distribution Z;({) was chosen so that
its corresponding creep displacement satisfied

AZM+H(-MZ " =Wn+1)

for all {. For perfect plasticity, the resultant values of X,, 2, were amended if they violated the
yield criterion. For instance, if the new value %,>1 then 3, was setat £, =1; if 2,< -1 then
2, = —1; etc. Having determined new values of X, 2,, a new value of W was evaiuated and hence
new values of X, %, obtained as above. This process converged rapidly to the optimum beund, four
iterations being adequate. The limiting solution for cycle time =0 was obtained in a similar
iterative manner.

Optimum upper bound solutions and limiting (7 —>0) solutions are compared with exact
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solutions in Fig. 4. For the results plotted, the yield zones of the cyclic plasticity solutions
occupy a fifth of the total depth h of the beam. The upper bound and limiting solution were
obtained fairly readily whereas the evaluation of exact solutions required large amounts of
computing time before a cyclic stationary state was reached. ,

For realistic structures, the creep strain accumulated in the cyclic stationary state is limited
to about 1%, i.e. to about ten yield strains. Assuming that the structure must withstand more
than 200 cycles in its lifetime, the non-dimensional cycle time (E Vo-r/a,) must be less than 0.5
for small values of A and less than 0.01 for values of A nearer 0.5 (see Fig. 4). It can be seen
that, for such cycle times both the upper bound and limiting (r->0) solutions give good
estimates of the true behaviour.

The optimum bound (6) and the limiting solution (r—0) have also been evaluated for a
beam of perfectly-plastic material (E,=0 in Fig. 1). Consideration is limited to cases where
ratchetting does not occur. This requires that the applied load P and the curvature change x
satisfy Px <2ba,/E, (Bree[6]). In addition the upper bound solutions are ones for which there
is no ratchetting so that additional loads R satisfy (P + R)x <2bo,*/E.

Some typical results are given in Table 1. The difference between the two solutions is much
greater than in the hardening case and, for low values of axial load P, the upper bound gets a lot
worse. This is because the stress in the outer one-fifth of the beam must be *o, for the
plasticity solution. These regions contribute a large fraction of the integral (6) and so the upper
bound is much less sensitive to axial load variations than the actual solution.

3.2 Thin-walled tube

Consider the thin-walled tube shown in Fig. 5 subjected to a constant axial load (giving rise
to a constant mean axial stress o;) and to a constant internal pressure p (giving rise to a
constant mean hoop stress o,). A temperature difference is imposed between the inner and
outer surfaces of the tube and has the periodic variation shown in Fig. 5. It is assumed that the
temperature difference gives rise to a temperature distribution which is linear in the radial
co-ordinate, 2. The deformation is completely described by two displacement components, an
axial displacement independent of radius and a radial displacement which gives rise to a hoop
strain approximately independent of radius (since thickness h <radius R). The effect of
temperature on creep rate is not considered and so the problem is similar in nature to that of the
beam. The structure is used to demonstrate the use of the hardening law and the upper bound
method for two-dimensional stress systems.

Exact solution. The function ¢ in the creep law (2) is taken as the von Mises equivalent
stress. The elastic and creep strain rates are then given from eqn (2) and Hooke’s law by

Eéx = dx - Vd'o, Eeo = do - Vd'x
.. . 12)
Vi = Volado,)" Yo —1ow)lay, Vo= Vdada,)" (gs—10,)la,

where suffices x, 6 denote axial and hoop components respectively, v is Poisson’s Ratio and o,
is the equivalent stress, o.2 = 0,> + 05> — 0x0%s. The numerical results have been obtained for a
value of Poisson’s Ratio v = 0.3. The conditions of constant mean axial stress, constant mean
hoop stress and of total axial and hoop strains being independent of radius readily lead to the

Table 1. Perfectly-plastic beam, comparison of non-dimensional strain rates

A

0.0 0.1 0.2 0.3 0.4 0.5

3,=01,vy=25

Limiting solution ( —0) 0001 0.008 0011 0013 0013 0014
Optimum bound (6) 0.110 0119 0.127 0.133 0137 0.139
2,=025, y=25

Limiting solution (71— 0) 0095 0094 0.120 0.134 0.142 0.4

Optimum bound (6) 0283 0289 0292 0293 0293 0293
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Fig. 5. Geometry and loading of thin tube.

required resuits for periods of creep at constant temperature,

in /-2
éx = Vx d‘ éo = Va d{
~1f2 -2

A fm(V+ Vo) df ——E— (V. + »Vi) (13)
TR P (R

. E v . E . .

Oy = H—_—;;SJ’_”Z(V. +vV,)d{ —z-l—_—;;;(V, +vV,)

where the non-dimensional co-ordinate { = 2/h has been introduced. It has been assumed that

no further plastic strains occur during periods of creep at constant temperature (an assumption

valid for the conditions considered). Equations (12) and (13) have been solved using the method

of time-steps in conjunction with the fourth-order Runge~-Kutta method given by eqn (10).
The above elastic-creep analysis must be interrupted at times of temperature change by an

elastic-plastic analysis. The yield criterion (4) may be written in terms of the constants o, E; of

Fig. 1 as
G+ Gy’ = GoGo S 0y}
where

G = 0y — 4E(p, +1po)/3 (14)
Gy = 0p —4E\(ps +1p:)/3

which is a translation of the Mises ellipse in the o,, o9 plane. The flow rule (4) is
PodPe = (G ~150)/(Gy — 15). (15)

In order to solve the elastic-plastic problem, the temperature change AT must be divided
into a number of intervals 8T (ten intervals were found to be adequate). The change in total
strain is then given from eqn (1) as

8€x = &x + 8px - Q{GT, 8€o = 889 + Gpo - a{éT (16)

where Se,, 8¢, are independent of /. For any given estimates of 8¢, 5¢, the changes in 30, 80,
which would occur elastically (8p, = 8p, =0) can be evaluated using eqn (16). Where the
elastic changes do not cause the yield criterion (14) to be violated, the changes in stress have
their elastic values and 8p, = 8p, = 0. Where the elastic changes cause (14) to be violated, use
of the flow rule (15) and the condition that the final state must lie on the yield surface enable
8ps, 8pe to be related to 8o, 80 The changes 80, 50, can then be obtained from eqn (16). An
iterative method was used to find those values of 8¢,, 5¢, for which the mean stress changes
were zero. Details of the numerical procedure are omitted for brevity.

Combination of the above elastic-creep and elastic-plastic analyses enables the cyclic
stationary state to be obtained by convergence from any initial stress distribution. For
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comparison purposes, the cyclic stationary state is characterised by the non-dimensional work
or generalised displacement rate U given by
)
Ty Oy

U= (gz)(.E_&) +
Oy ay
where Ae,, Ae, are mean axial and hoop strain increments per unit non-dimensional time. Some
results are presented in Fig. 6 for a range of non-dimensional cycle time 7 and for a range of the
cycle parameter A.

°
w
T

o
~N
T

E1= 0'025
n=5

O’s: 0-@0;
AT= 40y /Ew

o
=

Generalised displacement per unit non-dimensional time

1 L ' L

.
o1 02 03 0% (2]

Fig. 6. Tube, comparison of exact, limiting and upper bound solutions.

Upper work bound. In ortder to determine the work bound (7) it is necessary to find the form
of the cyclic plasticity solution. This consists of an elastic core where no yielding occurs and
yield zones where equal and opposite amounts of plastic strain occur on application and
removal of the temperature difference. For the temperature change, it can be seen from egns
(12) and (16) that for purely elastic behaviour (5p, = &ps = S¢, = d¢€q = 0) b0; = 80y, i.e. that the
elastic loading line is parallel to the major axis of the Mises ellipse. As a result of plastic
deformation the Mises ellipse is translated but not rotated in the o,, ¢ plane and consequently
in the yield zones for the cyclic plasticity solution, loading occurs along the major axis of the
Mises ellipse. This is shown schematically in Fig. 7. Starting from the point A' on the dashed
ellipse, elastic changes occur until the point B! is reached. Plasticity then occurs from B! to B
and the yield surface moves from the dashed ellipse to the solid ellipse. On reversal of the
temperature difference, changes are elastic from B to A and plasticity occurs from A to A’
returning the yield surface to its original position.

When yielding occurs, the changes in plastic strain are then simply related to the stress
changes from eqns (14) and (15) by

80, = 809 = 2E8p, =2E,8p, (18)

The overall changes in o,, oy are then easily obtained in terms of the overall change in
temperature difference AT from eqns (16) and (18). Introducing the non-dimensional tem-
perature change y = EaAT/20,(1-v), the elastic core is the region |{|=1/y. Denoting the
non-dimensional stress distribution for the cyclic plasticity solution as %({) for 0 <t; < Ar and
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Fig. 7. Londing surfaces for cyclic plasticity solution.

as Zy(¢) for At <t <t then

2E\(1-v)
E+2E\(1-»)
22=2|+2‘y§, —l/‘yS€Sl/‘y (19)

22=2;+2—2(l—y{)[E—3_-E%é%’_)—vs], 1lys{ s}

zz=z.—2+2(1+y;)[ ] —i=y=-1y

Here Z,, 2, can represent either o./o, or ou/o, but different choices of 2({) are required to
satisfy equilibrium requirements. Denoting the corresponding values of X, as I, 2, with
equivalent stress 2, the work bound (7) may be written in terms of the generalized
displacement U of eqn (17) as

a4+l L2
vs——(=1=) [ amrea-n¥ta
1/2

=
(u-Dn\n+1 _
12 12 (20)
where u=[ ZIdflo,= 3 dle,
-112 -1/2
The associated strain cycles (8), Bx, B say, are
Bx = AZY 'Bix = 1219) + (1 = M5 (B = %220)}
@n
Bo = AZT 'Cie —1210) + (1 = )25 (220 — 1220)

where the condition at the optimum is that 8, and 8, are independent of {.
Since the applied loads are constant, the other condition at the optimum is similar to egn
(30) of [4] and is related to the bound (20) by W, say,

W=(n+ 1)[/3,((‘;’5) + Bo(g—:)] @)
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where

w L fmn:‘ 1-2)35 " d 23
= Tl +(1-A)28 1 de
-1 _m{ e +(1-2)25 " dg (23)

The following iterative procedure to obtain the optimum bound was adopted.

Initial estimates X, , %4 which satisfied eqn (20) enabled W to be evaluated from eqns (19)
and (23). For this value of W, new values of 3, 2,, were chosen so that eqn (20) was satisfied
and so that B,, Be given by (21) were independent of { and satisfied (22). The new values of 3,
3.1 led to a new value of W from eqns (19) and (23) and hence to further estimates of X, 2.
The process was repeated to convergence. The limiting solution for cycle time r— 0 was found
in a similar iterative manner.

The optimum works bounds (7) and the limiting solutions (r —0) are compared with exact
solutions in Fig. 6. As in the case of the beam, the bounds and limiting solutions were evaluated
fairly readily whilst the exact solutions required large amounts of computing time before a
cyclic stationary state was reached.

The limitation on accumulated creep strain in practical structures suggests that a typical
non-dimensional cycle time is about = =0.25. It can be seen From Fig. 6 that, for such cycle
times, both the upper bound method and the limiting solution (r — 0) give good estimates of the
true behaviour.

3.3 Two-bar structure

Consider the structure shown in Fig. 8 consisting of two bars of equal cross-sectional area A
and of equal length, I. A constant vertical load P is applied and the structure is constrained to
move vertically. The temperature of bar 2 is held constant while the temperature of bar 1 varies
periodically as shown in Fig. 8. The bars are made of perfectly-plastic material and the
structure is used to assess the accuracy of the upper bound method in cases of ratchetting.

The non-dimensional parameters 2, = P[2Ao, and 21 = EaAT/e,, where a is the coefficient
of thermal expansion, are used to describe the loading. The temperature effect on creep rate
g(6) of eqn (2) is represented by the constant F which is the factor by which the creep rate
increases for a temperature increase AT.

Exact solution (r—0). The exact solution for cycle time r—0 can be determined im-
mediately. After bar 1 heats up (f = 0*) the stress in bar 2 must be equal to the yield stress a,,
i.e. 2,(0") = 1. From conditions of compatibility and equilibrium, the displacement and stress
rates, i, 3,, at this time are

B(0") = Bu(0")/loy = (EVol2a, )1 + FQZ, = 1"}
22(0‘) = - (EVdZO’y){l - F(zzp -

(24)

where 8 is the non-dimensional displacement rate and eqns (24) are only valid if they give
3, <0. Attention is restricted to cases where 3,(0*) is negative as given above, which is true for
any value of F if 3, <0.5. Assuming that stress redistribution is small in the time 0 <t <A, the
strain incurred in this part of the cycle is A78(0") and the stress in bar 2 immediately before the
temperature change at time At is 2(A77) = 1+ Ar3x(0+). Immediately after the temperature

QLLLLLLLLL, Temp.
Bar 1
/
D © . T
[a——
Bor 2
ol Ale iAol
— H Time
A t-—-‘

P,u
Fig. 8. Geometry and loading of two-bar structure.
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change, the stress in bar 1 is the yield stress and hence the stress in bar 2 is 2(A7*) =23, - 1.
Since no plastic strain occurs in bar 2 at this time, the strain change due to the temperature
change is

BATH = BAT) =2AAr") - ZxAr7) =23, — 1 — 1 = AT3(0%)
The strain change due to creep between time 0* and At~ is At8(0*) and hence from equs (24)
BAT*) - B(0*) =23, — 2+ EArVi/a,.
In similar manner the change between times Ar*, 7+ is
B(r*)~B(ArH) =31 +23, -2+ E(1-A)rVio,.
The total change per cycle g(r*)— 8(0") = AB, say, is then
AB =31 +4%, -4+ ErVio, =AU, +AU,,

say, where AU, is the ratchet displacement per cycle in the absence of creep. It should be
noted that, in the presence of creep, the displacement increase due to plasticity is greater than
AU,. It can be seen that the increase per cycle is independent of the parameters A, F.

Upper bound. The cyclic plasticity solution for this problem is shown in Fig. 9. The stress
in bar 2 is o, for 0<t <Ar and in bar 1 is o, for Ar <t <t The stress distribution is then

completely defined from equilibrium considerations and the upper displacement bound (6) can
only be optimised for an additional load R (=(u — 1)P say). The upper bound (6) is then

. 1 n * AUc
AB 54#2p"4+27+Z(n ¥ l) @ -1Z,)

where AU, = ErVylo, as defined above. Although the bound invoives the parameters A, F,
the optimum solution occurs at values of u for which (2uX, —1)**' <1 and is virtually
independent of A, F. This is in agreement with the exact solution r—0 given above.

The upper bound and the exact solution (- 0) are compared in Table 2 for a variety of
AU,, AU, i.e. for a variety of cycle times. In view of the severe loading, agreement between the
two solutions is good.

(1+{2uZ, - 1}1*"'AF +1-2)]

-=<Barl
e Q1 2

Fig. 9. Two-bar, cyclic plasticity solution.

Table 2. Two-bar, comparison of non-dimensional strain increments

AU, 002 005 o010 002 005 0.10

AU, 005 005 005 010 010 0.10

Exact (r-0) 007 010 015 012 015 02

Bound (6) 018 021 026 025 028 033
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4, DISCUSSION

Upper bounds on displacement, work and creep energy dissipation have been applied to
three structures. The bounds give a good estimate of the true behaviour for realistic cycle
times. However, the accuracy of the displacement and work bounds becemes poor when there
are large variations in imposed strains combined with low mechanical loads. This limitation of
the upper displacement and work bounds will also apply for loading below the shakedown limit.

The upper bound on creep energy dissipation does not suffer from this restriction. As for
loading below the shakedown limit, the optimum stress history should closely approximate the
actual stress history for practical structures. Although the upper bound solution cannot guarantee
to give a safe estimate of any particular displacement, it is, on average, safe.

For the cases considered, exact solutions required large amounts of computing time before
a cyclic stationary state was reached whereas the optimum upper bounds could be readily
evaluated. This was because the form of the cyclic plasticity solution could be easily obtained.
However, for complex structures, the evaluation of a cyclic plasticity solution may prove to be
difficult. Many perfectly-plastic structures settle down to a cyclic stress state after one cycle,
but for cases of kinematic hardening the cyclic stress state is often approached only asymp-
totically. However, one cyclic plasticity solution may be used to provide upper bounds for a
range of problems. Hence, when the behaviour of a complex structure is required for a variety of
loading conditions, it should be worthwhile to evaluate the cyclic plasticity solution and use the
upper bound approach.
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